EmbeddingModels

EmbeddingModels represent services that transform text into vector embeddings for semantic search.

EmbeddingModels represent services that generate vector representations of text data. In the MCP Toolbox, these models enable Semantic Queries, allowing Tools to automatically convert human-readable text into numerical vectors before using them in a query.

This is primarily used in two scenarios:

  • Vector Ingestion: Converting a text parameter into a vector string during an INSERT operation.

  • Semantic Search: Converting a natural language query into a vector to perform similarity searches.

Hidden Parameter Duplication (valueFromParam)

When building tools for vector ingestion, you often need the same input string twice:

  1. To store the original text in a TEXT column.
  2. To generate the vector embedding for a VECTOR column.

Requesting an Agent (LLM) to output the exact same string twice is inefficient and error-prone. The valueFromParam field solves this by allowing a parameter to inherit its value from another parameter in the same tool.

Key Behaviors

  1. Hidden from Manifest: Parameters with valueFromParam set are excluded from the tool definition sent to the Agent. The Agent does not know this parameter exists.
  2. Auto-Filled: When the tool is executed, the Toolbox automatically copies the value from the referenced parameter before processing embeddings.

Example

The following configuration defines an embedding model and applies it to specific tool parameters.

Tip

Use environment variable replacement with the format ${ENV_NAME} instead of hardcoding your API keys into the configuration file.

Step 1 - Define an Embedding Model

Define an embedding model in the embeddingModels section:

kind: embeddingModels
name: gemini-model # Name of the embedding model
type: gemini
model: gemini-embedding-001
apiKey: ${GOOGLE_API_KEY}
dimension: 768

Step 2 - Embed Tool Parameters

Use the defined embedding model, embed your query parameters using the embeddedBy field. Only string-typed parameters can be embedded:

# Vector ingestion tool
kind: tools
name: insert_embedding
type: postgres-sql
source: my-pg-instance
statement: |
  INSERT INTO documents (content, embedding) 
  VALUES ($1, $2);
parameters:
  - name: content
    type: string
    description: The raw text content to be stored in the database.
  - name: vector_string
    type: string
    # This parameter is hidden from the LLM.
    # It automatically copies the value from 'content' and embeds it.
    valueFromParam: content
    embeddedBy: gemini-model
---
# Semantic search tool
kind: tools
name: search_embedding
type: postgres-sql
source: my-pg-instance
statement: |
  SELECT id, content, embedding <-> $1 AS distance 
  FROM documents
  ORDER BY distance LIMIT 1
parameters:
  - name: semantic_search_string
    type: string
    description: The search query that will be converted to a vector.
    embeddedBy: gemini-model # refers to the name of a defined embedding model

Kinds of Embedding Models


Gemini Embedding

Use Google’s Gemini models to generate high-performance text embeddings for vector databases.