Dialogflow API . projects . locations . agents . playbooks

Instance Methods

examples()

Returns the examples Resource.

versions()

Returns the versions Resource.

close()

Close httplib2 connections.

create(parent, body=None, x__xgafv=None)

Creates a playbook in a specified agent.

delete(name, x__xgafv=None)

Deletes a specified playbook.

get(name, x__xgafv=None)

Retrieves the specified Playbook.

list(parent, pageSize=None, pageToken=None, x__xgafv=None)

Returns a list of playbooks in the specified agent.

list_next()

Retrieves the next page of results.

patch(name, body=None, updateMask=None, x__xgafv=None)

Updates the specified Playbook.

Method Details

close()
Close httplib2 connections.
create(parent, body=None, x__xgafv=None)
Creates a playbook in a specified agent.

Args:
  parent: string, Required. The agent to create a playbook for. Format: `projects//locations//agents/`. (required)
  body: object, The request body.
    The object takes the form of:

{ # Playbook is the basic building block to instruct the LLM how to execute a certain task. A playbook consists of a goal to accomplish, an optional list of step by step instructions (the step instruction may refers to name of the custom or default plugin tools to use) to perform the task, a list of contextual input data to be passed in at the beginning of the invoked, and a list of output parameters to store the playbook result.
  "createTime": "A String", # Output only. The timestamp of initial playbook creation.
  "displayName": "A String", # Required. The human-readable name of the playbook, unique within an agent.
  "goal": "A String", # Required. High level description of the goal the playbook intend to accomplish.
  "inputParameterDefinitions": [ # Optional. Defined structured input parameters for this playbook.
    { # Defines the properties of a parameter. Used to define parameters used in the agent and the input / output parameters for each fulfillment.
      "description": "A String", # Human-readable description of the parameter. Limited to 300 characters.
      "name": "A String", # Required. Name of parameter.
      "type": "A String", # Type of parameter.
      "typeSchema": { # Encapsulates different type schema variations: either a reference to an a schema that's already defined by a tool, or an inline definition. # Optional. Type schema of parameter.
        "inlineSchema": { # A type schema object that's specified inline. # Set if this is an inline schema definition.
          "items": # Object with schema name: GoogleCloudDialogflowCxV3beta1TypeSchema # Schema of the elements if this is an ARRAY type.
          "type": "A String", # Data type of the schema.
        },
        "schemaReference": { # A reference to the schema of an existing tool. # Set if this is a schema reference.
          "schema": "A String", # The name of the schema.
          "tool": "A String", # The tool that contains this schema definition. Format: `projects//locations//agents//tools/`.
        },
      },
    },
  ],
  "instruction": { # Message of the Instruction of the playbook. # Instruction to accomplish target goal.
    "steps": [ # Ordered list of step by step execution instructions to accomplish target goal.
      { # Message of single step execution.
        "steps": [ # Sub-processing needed to execute the current step.
          # Object with schema name: GoogleCloudDialogflowCxV3beta1PlaybookStep
        ],
        "text": "A String", # Step instruction in text format.
      },
    ],
  },
  "llmModelSettings": { # Settings for LLM models. # Optional. Llm model settings for the playbook.
    "model": "A String", # The selected LLM model.
    "promptText": "A String", # The custom prompt to use.
  },
  "name": "A String", # The unique identifier of the playbook. Format: `projects//locations//agents//playbooks/`.
  "outputParameterDefinitions": [ # Optional. Defined structured output parameters for this playbook.
    { # Defines the properties of a parameter. Used to define parameters used in the agent and the input / output parameters for each fulfillment.
      "description": "A String", # Human-readable description of the parameter. Limited to 300 characters.
      "name": "A String", # Required. Name of parameter.
      "type": "A String", # Type of parameter.
      "typeSchema": { # Encapsulates different type schema variations: either a reference to an a schema that's already defined by a tool, or an inline definition. # Optional. Type schema of parameter.
        "inlineSchema": { # A type schema object that's specified inline. # Set if this is an inline schema definition.
          "items": # Object with schema name: GoogleCloudDialogflowCxV3beta1TypeSchema # Schema of the elements if this is an ARRAY type.
          "type": "A String", # Data type of the schema.
        },
        "schemaReference": { # A reference to the schema of an existing tool. # Set if this is a schema reference.
          "schema": "A String", # The name of the schema.
          "tool": "A String", # The tool that contains this schema definition. Format: `projects//locations//agents//tools/`.
        },
      },
    },
  ],
  "referencedFlows": [ # Output only. The resource name of flows referenced by the current playbook in the instructions.
    "A String",
  ],
  "referencedPlaybooks": [ # Output only. The resource name of other playbooks referenced by the current playbook in the instructions.
    "A String",
  ],
  "referencedTools": [ # Optional. The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
    "A String",
  ],
  "tokenCount": "A String", # Output only. Estimated number of tokes current playbook takes when sent to the LLM.
  "updateTime": "A String", # Output only. Last time the playbook version was updated.
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Playbook is the basic building block to instruct the LLM how to execute a certain task. A playbook consists of a goal to accomplish, an optional list of step by step instructions (the step instruction may refers to name of the custom or default plugin tools to use) to perform the task, a list of contextual input data to be passed in at the beginning of the invoked, and a list of output parameters to store the playbook result.
  "createTime": "A String", # Output only. The timestamp of initial playbook creation.
  "displayName": "A String", # Required. The human-readable name of the playbook, unique within an agent.
  "goal": "A String", # Required. High level description of the goal the playbook intend to accomplish.
  "inputParameterDefinitions": [ # Optional. Defined structured input parameters for this playbook.
    { # Defines the properties of a parameter. Used to define parameters used in the agent and the input / output parameters for each fulfillment.
      "description": "A String", # Human-readable description of the parameter. Limited to 300 characters.
      "name": "A String", # Required. Name of parameter.
      "type": "A String", # Type of parameter.
      "typeSchema": { # Encapsulates different type schema variations: either a reference to an a schema that's already defined by a tool, or an inline definition. # Optional. Type schema of parameter.
        "inlineSchema": { # A type schema object that's specified inline. # Set if this is an inline schema definition.
          "items": # Object with schema name: GoogleCloudDialogflowCxV3beta1TypeSchema # Schema of the elements if this is an ARRAY type.
          "type": "A String", # Data type of the schema.
        },
        "schemaReference": { # A reference to the schema of an existing tool. # Set if this is a schema reference.
          "schema": "A String", # The name of the schema.
          "tool": "A String", # The tool that contains this schema definition. Format: `projects//locations//agents//tools/`.
        },
      },
    },
  ],
  "instruction": { # Message of the Instruction of the playbook. # Instruction to accomplish target goal.
    "steps": [ # Ordered list of step by step execution instructions to accomplish target goal.
      { # Message of single step execution.
        "steps": [ # Sub-processing needed to execute the current step.
          # Object with schema name: GoogleCloudDialogflowCxV3beta1PlaybookStep
        ],
        "text": "A String", # Step instruction in text format.
      },
    ],
  },
  "llmModelSettings": { # Settings for LLM models. # Optional. Llm model settings for the playbook.
    "model": "A String", # The selected LLM model.
    "promptText": "A String", # The custom prompt to use.
  },
  "name": "A String", # The unique identifier of the playbook. Format: `projects//locations//agents//playbooks/`.
  "outputParameterDefinitions": [ # Optional. Defined structured output parameters for this playbook.
    { # Defines the properties of a parameter. Used to define parameters used in the agent and the input / output parameters for each fulfillment.
      "description": "A String", # Human-readable description of the parameter. Limited to 300 characters.
      "name": "A String", # Required. Name of parameter.
      "type": "A String", # Type of parameter.
      "typeSchema": { # Encapsulates different type schema variations: either a reference to an a schema that's already defined by a tool, or an inline definition. # Optional. Type schema of parameter.
        "inlineSchema": { # A type schema object that's specified inline. # Set if this is an inline schema definition.
          "items": # Object with schema name: GoogleCloudDialogflowCxV3beta1TypeSchema # Schema of the elements if this is an ARRAY type.
          "type": "A String", # Data type of the schema.
        },
        "schemaReference": { # A reference to the schema of an existing tool. # Set if this is a schema reference.
          "schema": "A String", # The name of the schema.
          "tool": "A String", # The tool that contains this schema definition. Format: `projects//locations//agents//tools/`.
        },
      },
    },
  ],
  "referencedFlows": [ # Output only. The resource name of flows referenced by the current playbook in the instructions.
    "A String",
  ],
  "referencedPlaybooks": [ # Output only. The resource name of other playbooks referenced by the current playbook in the instructions.
    "A String",
  ],
  "referencedTools": [ # Optional. The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
    "A String",
  ],
  "tokenCount": "A String", # Output only. Estimated number of tokes current playbook takes when sent to the LLM.
  "updateTime": "A String", # Output only. Last time the playbook version was updated.
}
delete(name, x__xgafv=None)
Deletes a specified playbook.

Args:
  name: string, Required. The name of the playbook to delete. Format: `projects//locations//agents//playbooks/`. (required)
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }
}
get(name, x__xgafv=None)
Retrieves the specified Playbook.

Args:
  name: string, Required. The name of the playbook. Format: `projects//locations//agents//playbooks/`. (required)
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Playbook is the basic building block to instruct the LLM how to execute a certain task. A playbook consists of a goal to accomplish, an optional list of step by step instructions (the step instruction may refers to name of the custom or default plugin tools to use) to perform the task, a list of contextual input data to be passed in at the beginning of the invoked, and a list of output parameters to store the playbook result.
  "createTime": "A String", # Output only. The timestamp of initial playbook creation.
  "displayName": "A String", # Required. The human-readable name of the playbook, unique within an agent.
  "goal": "A String", # Required. High level description of the goal the playbook intend to accomplish.
  "inputParameterDefinitions": [ # Optional. Defined structured input parameters for this playbook.
    { # Defines the properties of a parameter. Used to define parameters used in the agent and the input / output parameters for each fulfillment.
      "description": "A String", # Human-readable description of the parameter. Limited to 300 characters.
      "name": "A String", # Required. Name of parameter.
      "type": "A String", # Type of parameter.
      "typeSchema": { # Encapsulates different type schema variations: either a reference to an a schema that's already defined by a tool, or an inline definition. # Optional. Type schema of parameter.
        "inlineSchema": { # A type schema object that's specified inline. # Set if this is an inline schema definition.
          "items": # Object with schema name: GoogleCloudDialogflowCxV3beta1TypeSchema # Schema of the elements if this is an ARRAY type.
          "type": "A String", # Data type of the schema.
        },
        "schemaReference": { # A reference to the schema of an existing tool. # Set if this is a schema reference.
          "schema": "A String", # The name of the schema.
          "tool": "A String", # The tool that contains this schema definition. Format: `projects//locations//agents//tools/`.
        },
      },
    },
  ],
  "instruction": { # Message of the Instruction of the playbook. # Instruction to accomplish target goal.
    "steps": [ # Ordered list of step by step execution instructions to accomplish target goal.
      { # Message of single step execution.
        "steps": [ # Sub-processing needed to execute the current step.
          # Object with schema name: GoogleCloudDialogflowCxV3beta1PlaybookStep
        ],
        "text": "A String", # Step instruction in text format.
      },
    ],
  },
  "llmModelSettings": { # Settings for LLM models. # Optional. Llm model settings for the playbook.
    "model": "A String", # The selected LLM model.
    "promptText": "A String", # The custom prompt to use.
  },
  "name": "A String", # The unique identifier of the playbook. Format: `projects//locations//agents//playbooks/`.
  "outputParameterDefinitions": [ # Optional. Defined structured output parameters for this playbook.
    { # Defines the properties of a parameter. Used to define parameters used in the agent and the input / output parameters for each fulfillment.
      "description": "A String", # Human-readable description of the parameter. Limited to 300 characters.
      "name": "A String", # Required. Name of parameter.
      "type": "A String", # Type of parameter.
      "typeSchema": { # Encapsulates different type schema variations: either a reference to an a schema that's already defined by a tool, or an inline definition. # Optional. Type schema of parameter.
        "inlineSchema": { # A type schema object that's specified inline. # Set if this is an inline schema definition.
          "items": # Object with schema name: GoogleCloudDialogflowCxV3beta1TypeSchema # Schema of the elements if this is an ARRAY type.
          "type": "A String", # Data type of the schema.
        },
        "schemaReference": { # A reference to the schema of an existing tool. # Set if this is a schema reference.
          "schema": "A String", # The name of the schema.
          "tool": "A String", # The tool that contains this schema definition. Format: `projects//locations//agents//tools/`.
        },
      },
    },
  ],
  "referencedFlows": [ # Output only. The resource name of flows referenced by the current playbook in the instructions.
    "A String",
  ],
  "referencedPlaybooks": [ # Output only. The resource name of other playbooks referenced by the current playbook in the instructions.
    "A String",
  ],
  "referencedTools": [ # Optional. The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
    "A String",
  ],
  "tokenCount": "A String", # Output only. Estimated number of tokes current playbook takes when sent to the LLM.
  "updateTime": "A String", # Output only. Last time the playbook version was updated.
}
list(parent, pageSize=None, pageToken=None, x__xgafv=None)
Returns a list of playbooks in the specified agent.

Args:
  parent: string, Required. The agent to list playbooks from. Format: `projects//locations//agents/`. (required)
  pageSize: integer, The maximum number of items to return in a single page. By default 100 and at most 1000.
  pageToken: string, The next_page_token value returned from a previous list request.
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # The response message for Playbooks.ListPlaybooks.
  "nextPageToken": "A String", # Token to retrieve the next page of results, or empty if there are no more results in the list.
  "playbooks": [ # The list of playbooks. There will be a maximum number of items returned based on the page_size field in the request.
    { # Playbook is the basic building block to instruct the LLM how to execute a certain task. A playbook consists of a goal to accomplish, an optional list of step by step instructions (the step instruction may refers to name of the custom or default plugin tools to use) to perform the task, a list of contextual input data to be passed in at the beginning of the invoked, and a list of output parameters to store the playbook result.
      "createTime": "A String", # Output only. The timestamp of initial playbook creation.
      "displayName": "A String", # Required. The human-readable name of the playbook, unique within an agent.
      "goal": "A String", # Required. High level description of the goal the playbook intend to accomplish.
      "inputParameterDefinitions": [ # Optional. Defined structured input parameters for this playbook.
        { # Defines the properties of a parameter. Used to define parameters used in the agent and the input / output parameters for each fulfillment.
          "description": "A String", # Human-readable description of the parameter. Limited to 300 characters.
          "name": "A String", # Required. Name of parameter.
          "type": "A String", # Type of parameter.
          "typeSchema": { # Encapsulates different type schema variations: either a reference to an a schema that's already defined by a tool, or an inline definition. # Optional. Type schema of parameter.
            "inlineSchema": { # A type schema object that's specified inline. # Set if this is an inline schema definition.
              "items": # Object with schema name: GoogleCloudDialogflowCxV3beta1TypeSchema # Schema of the elements if this is an ARRAY type.
              "type": "A String", # Data type of the schema.
            },
            "schemaReference": { # A reference to the schema of an existing tool. # Set if this is a schema reference.
              "schema": "A String", # The name of the schema.
              "tool": "A String", # The tool that contains this schema definition. Format: `projects//locations//agents//tools/`.
            },
          },
        },
      ],
      "instruction": { # Message of the Instruction of the playbook. # Instruction to accomplish target goal.
        "steps": [ # Ordered list of step by step execution instructions to accomplish target goal.
          { # Message of single step execution.
            "steps": [ # Sub-processing needed to execute the current step.
              # Object with schema name: GoogleCloudDialogflowCxV3beta1PlaybookStep
            ],
            "text": "A String", # Step instruction in text format.
          },
        ],
      },
      "llmModelSettings": { # Settings for LLM models. # Optional. Llm model settings for the playbook.
        "model": "A String", # The selected LLM model.
        "promptText": "A String", # The custom prompt to use.
      },
      "name": "A String", # The unique identifier of the playbook. Format: `projects//locations//agents//playbooks/`.
      "outputParameterDefinitions": [ # Optional. Defined structured output parameters for this playbook.
        { # Defines the properties of a parameter. Used to define parameters used in the agent and the input / output parameters for each fulfillment.
          "description": "A String", # Human-readable description of the parameter. Limited to 300 characters.
          "name": "A String", # Required. Name of parameter.
          "type": "A String", # Type of parameter.
          "typeSchema": { # Encapsulates different type schema variations: either a reference to an a schema that's already defined by a tool, or an inline definition. # Optional. Type schema of parameter.
            "inlineSchema": { # A type schema object that's specified inline. # Set if this is an inline schema definition.
              "items": # Object with schema name: GoogleCloudDialogflowCxV3beta1TypeSchema # Schema of the elements if this is an ARRAY type.
              "type": "A String", # Data type of the schema.
            },
            "schemaReference": { # A reference to the schema of an existing tool. # Set if this is a schema reference.
              "schema": "A String", # The name of the schema.
              "tool": "A String", # The tool that contains this schema definition. Format: `projects//locations//agents//tools/`.
            },
          },
        },
      ],
      "referencedFlows": [ # Output only. The resource name of flows referenced by the current playbook in the instructions.
        "A String",
      ],
      "referencedPlaybooks": [ # Output only. The resource name of other playbooks referenced by the current playbook in the instructions.
        "A String",
      ],
      "referencedTools": [ # Optional. The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
        "A String",
      ],
      "tokenCount": "A String", # Output only. Estimated number of tokes current playbook takes when sent to the LLM.
      "updateTime": "A String", # Output only. Last time the playbook version was updated.
    },
  ],
}
list_next()
Retrieves the next page of results.

        Args:
          previous_request: The request for the previous page. (required)
          previous_response: The response from the request for the previous page. (required)

        Returns:
          A request object that you can call 'execute()' on to request the next
          page. Returns None if there are no more items in the collection.
        
patch(name, body=None, updateMask=None, x__xgafv=None)
Updates the specified Playbook.

Args:
  name: string, The unique identifier of the playbook. Format: `projects//locations//agents//playbooks/`. (required)
  body: object, The request body.
    The object takes the form of:

{ # Playbook is the basic building block to instruct the LLM how to execute a certain task. A playbook consists of a goal to accomplish, an optional list of step by step instructions (the step instruction may refers to name of the custom or default plugin tools to use) to perform the task, a list of contextual input data to be passed in at the beginning of the invoked, and a list of output parameters to store the playbook result.
  "createTime": "A String", # Output only. The timestamp of initial playbook creation.
  "displayName": "A String", # Required. The human-readable name of the playbook, unique within an agent.
  "goal": "A String", # Required. High level description of the goal the playbook intend to accomplish.
  "inputParameterDefinitions": [ # Optional. Defined structured input parameters for this playbook.
    { # Defines the properties of a parameter. Used to define parameters used in the agent and the input / output parameters for each fulfillment.
      "description": "A String", # Human-readable description of the parameter. Limited to 300 characters.
      "name": "A String", # Required. Name of parameter.
      "type": "A String", # Type of parameter.
      "typeSchema": { # Encapsulates different type schema variations: either a reference to an a schema that's already defined by a tool, or an inline definition. # Optional. Type schema of parameter.
        "inlineSchema": { # A type schema object that's specified inline. # Set if this is an inline schema definition.
          "items": # Object with schema name: GoogleCloudDialogflowCxV3beta1TypeSchema # Schema of the elements if this is an ARRAY type.
          "type": "A String", # Data type of the schema.
        },
        "schemaReference": { # A reference to the schema of an existing tool. # Set if this is a schema reference.
          "schema": "A String", # The name of the schema.
          "tool": "A String", # The tool that contains this schema definition. Format: `projects//locations//agents//tools/`.
        },
      },
    },
  ],
  "instruction": { # Message of the Instruction of the playbook. # Instruction to accomplish target goal.
    "steps": [ # Ordered list of step by step execution instructions to accomplish target goal.
      { # Message of single step execution.
        "steps": [ # Sub-processing needed to execute the current step.
          # Object with schema name: GoogleCloudDialogflowCxV3beta1PlaybookStep
        ],
        "text": "A String", # Step instruction in text format.
      },
    ],
  },
  "llmModelSettings": { # Settings for LLM models. # Optional. Llm model settings for the playbook.
    "model": "A String", # The selected LLM model.
    "promptText": "A String", # The custom prompt to use.
  },
  "name": "A String", # The unique identifier of the playbook. Format: `projects//locations//agents//playbooks/`.
  "outputParameterDefinitions": [ # Optional. Defined structured output parameters for this playbook.
    { # Defines the properties of a parameter. Used to define parameters used in the agent and the input / output parameters for each fulfillment.
      "description": "A String", # Human-readable description of the parameter. Limited to 300 characters.
      "name": "A String", # Required. Name of parameter.
      "type": "A String", # Type of parameter.
      "typeSchema": { # Encapsulates different type schema variations: either a reference to an a schema that's already defined by a tool, or an inline definition. # Optional. Type schema of parameter.
        "inlineSchema": { # A type schema object that's specified inline. # Set if this is an inline schema definition.
          "items": # Object with schema name: GoogleCloudDialogflowCxV3beta1TypeSchema # Schema of the elements if this is an ARRAY type.
          "type": "A String", # Data type of the schema.
        },
        "schemaReference": { # A reference to the schema of an existing tool. # Set if this is a schema reference.
          "schema": "A String", # The name of the schema.
          "tool": "A String", # The tool that contains this schema definition. Format: `projects//locations//agents//tools/`.
        },
      },
    },
  ],
  "referencedFlows": [ # Output only. The resource name of flows referenced by the current playbook in the instructions.
    "A String",
  ],
  "referencedPlaybooks": [ # Output only. The resource name of other playbooks referenced by the current playbook in the instructions.
    "A String",
  ],
  "referencedTools": [ # Optional. The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
    "A String",
  ],
  "tokenCount": "A String", # Output only. Estimated number of tokes current playbook takes when sent to the LLM.
  "updateTime": "A String", # Output only. Last time the playbook version was updated.
}

  updateMask: string, The mask to control which fields get updated. If the mask is not present, all fields will be updated.
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Playbook is the basic building block to instruct the LLM how to execute a certain task. A playbook consists of a goal to accomplish, an optional list of step by step instructions (the step instruction may refers to name of the custom or default plugin tools to use) to perform the task, a list of contextual input data to be passed in at the beginning of the invoked, and a list of output parameters to store the playbook result.
  "createTime": "A String", # Output only. The timestamp of initial playbook creation.
  "displayName": "A String", # Required. The human-readable name of the playbook, unique within an agent.
  "goal": "A String", # Required. High level description of the goal the playbook intend to accomplish.
  "inputParameterDefinitions": [ # Optional. Defined structured input parameters for this playbook.
    { # Defines the properties of a parameter. Used to define parameters used in the agent and the input / output parameters for each fulfillment.
      "description": "A String", # Human-readable description of the parameter. Limited to 300 characters.
      "name": "A String", # Required. Name of parameter.
      "type": "A String", # Type of parameter.
      "typeSchema": { # Encapsulates different type schema variations: either a reference to an a schema that's already defined by a tool, or an inline definition. # Optional. Type schema of parameter.
        "inlineSchema": { # A type schema object that's specified inline. # Set if this is an inline schema definition.
          "items": # Object with schema name: GoogleCloudDialogflowCxV3beta1TypeSchema # Schema of the elements if this is an ARRAY type.
          "type": "A String", # Data type of the schema.
        },
        "schemaReference": { # A reference to the schema of an existing tool. # Set if this is a schema reference.
          "schema": "A String", # The name of the schema.
          "tool": "A String", # The tool that contains this schema definition. Format: `projects//locations//agents//tools/`.
        },
      },
    },
  ],
  "instruction": { # Message of the Instruction of the playbook. # Instruction to accomplish target goal.
    "steps": [ # Ordered list of step by step execution instructions to accomplish target goal.
      { # Message of single step execution.
        "steps": [ # Sub-processing needed to execute the current step.
          # Object with schema name: GoogleCloudDialogflowCxV3beta1PlaybookStep
        ],
        "text": "A String", # Step instruction in text format.
      },
    ],
  },
  "llmModelSettings": { # Settings for LLM models. # Optional. Llm model settings for the playbook.
    "model": "A String", # The selected LLM model.
    "promptText": "A String", # The custom prompt to use.
  },
  "name": "A String", # The unique identifier of the playbook. Format: `projects//locations//agents//playbooks/`.
  "outputParameterDefinitions": [ # Optional. Defined structured output parameters for this playbook.
    { # Defines the properties of a parameter. Used to define parameters used in the agent and the input / output parameters for each fulfillment.
      "description": "A String", # Human-readable description of the parameter. Limited to 300 characters.
      "name": "A String", # Required. Name of parameter.
      "type": "A String", # Type of parameter.
      "typeSchema": { # Encapsulates different type schema variations: either a reference to an a schema that's already defined by a tool, or an inline definition. # Optional. Type schema of parameter.
        "inlineSchema": { # A type schema object that's specified inline. # Set if this is an inline schema definition.
          "items": # Object with schema name: GoogleCloudDialogflowCxV3beta1TypeSchema # Schema of the elements if this is an ARRAY type.
          "type": "A String", # Data type of the schema.
        },
        "schemaReference": { # A reference to the schema of an existing tool. # Set if this is a schema reference.
          "schema": "A String", # The name of the schema.
          "tool": "A String", # The tool that contains this schema definition. Format: `projects//locations//agents//tools/`.
        },
      },
    },
  ],
  "referencedFlows": [ # Output only. The resource name of flows referenced by the current playbook in the instructions.
    "A String",
  ],
  "referencedPlaybooks": [ # Output only. The resource name of other playbooks referenced by the current playbook in the instructions.
    "A String",
  ],
  "referencedTools": [ # Optional. The resource name of tools referenced by the current playbook in the instructions. If not provided explicitly, they are will be implied using the tool being referenced in goal and steps.
    "A String",
  ],
  "tokenCount": "A String", # Output only. Estimated number of tokes current playbook takes when sent to the LLM.
  "updateTime": "A String", # Output only. Last time the playbook version was updated.
}