Interface CreateTuningJobConfig

Supervised fine-tuning job creation request - optional fields.

interface CreateTuningJobConfig {
    abortSignal?: AbortSignal;
    adapterSize?: AdapterSize;
    batchSize?: number;
    description?: string;
    epochCount?: number;
    exportLastCheckpointOnly?: boolean;
    httpOptions?: HttpOptions;
    learningRate?: number;
    learningRateMultiplier?: number;
    preTunedModelCheckpointId?: string;
    tunedModelDisplayName?: string;
    validationDataset?: TuningValidationDataset;
}

Properties

abortSignal?: AbortSignal

Abort signal which can be used to cancel the request.

NOTE: AbortSignal is a client-only operation. Using it to cancel an operation will not cancel the request in the service. You will still be charged usage for any applicable operations.

adapterSize?: AdapterSize

Adapter size for tuning.

batchSize?: number

The batch size hyperparameter for tuning. If not set, a default of 4 or 16 will be used based on the number of training examples.

description?: string

The description of the TuningJob

epochCount?: number

Number of complete passes the model makes over the entire training dataset during training.

exportLastCheckpointOnly?: boolean

If set to true, disable intermediate checkpoints for SFT and only the last checkpoint will be exported. Otherwise, enable intermediate checkpoints for SFT.

httpOptions?: HttpOptions

Used to override HTTP request options.

learningRate?: number

The learning rate hyperparameter for tuning. If not set, a default of 0.001 or 0.0002 will be calculated based on the number of training examples.

learningRateMultiplier?: number

Multiplier for adjusting the default learning rate.

preTunedModelCheckpointId?: string

The optional checkpoint id of the pre-tuned model to use for tuning, if applicable.

tunedModelDisplayName?: string

The display name of the tuned Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.

validationDataset?: TuningValidationDataset

Cloud Storage path to file containing training dataset for tuning. The dataset must be formatted as a JSONL file.